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Cells use uridinediphosphd-acetylglucosamine (UDP-GIcNAC) H UTP or ! H
to transfeN-acetylglucosamine to an incredible range of proteins, HO= o atte - PR HO
includin_g enzymes ar_1d t_rans_criptior_l faptors_, as a transient post- R ;IJ._O V% 50 G, R lpp @ToP)
translational modification implicated in signaling pathways$ow- 1R=OH O ' 4R=OH
ever, the low concentration of this modification makes identification 2R-NhAe Hi anz\c
= NHa -

of glycosylated sites on proteins challengitfgFacile access to
labeled sugar nucleotides would allow the modification to be tagged
for easy isolation and mass spectrometry-based sequencing. Hereirrapje 1. Kinetic Values for Each of the Functions of the P.

we present the chemical function analysis of a recombinant sugar furiosus Protein Assayed Independently with Varying ,
nucleotidyltransferase from the hyperthermopifiigrococcus fu- %Oggfg;:ﬁgggz)m One Substrate (Fixed Substrate Concentration
riosus and its use in the one-pot synthesis of chloroacetyl- and

Figure 1. Synthesis of sugar nucleotides by an enzyme fRarfuriosus

alkyne-tagged analogues of UDP-GIcNAc. K kia; kaitllKMi1
Sugar nucleotides for natural products and glycobiology studies substrate WM ) MTsT)
have attracted much recent interest, but chemical strategies for their Nucleotidyltransferase
synthesis remain cumbersorié:*Synthetic strategies incorporating g:ﬂggzg:i:gﬂgzgﬂgg Eg;.:.ag) ﬁi gg 8gg
biocatalysts are often limited by the stability of the enzymes and mannose-1-phosphate (UTP) 404 1.2 0.03
their limited tolerance of nonnatural substrateEhe majority of mannose-1-phosphate (dTTP) A5 1.4 0.03
these studies have focused on bacterial and eukaryotic proteins.N-acetylglucosamine-1-phosphate (UTP) 100 44 0.45
The third branch of life, archadaprovides a largely untapped  N-acetylglucosamine-1-phosphate (dTTP) 820 40 0.42
genetic source of potential synthetic enzymes, many of which are ] Acetyltransferase
predicted to be unusually thermostabléhe thermal vent archaea g'?&ﬁii?ﬁ:?ﬂ?;}g _plr_‘gﬁgzggge) 63 ;? gg 8(1)2
P. furiosusis of particular interest as a large amount of information g (glucosamine-1-phosphate) 244 15 0.03

is expected from a structural proteomics effort and will require
correlation to verified chemical function d&t@o explore the value

of these proteins as glycobiology reagents, we copied a 1260 baselelineate the most likely in vivo chemical function of this gene
pair P. furiosusgene annotated as a glucose-1-phosphate thymidy- product (Table 1). Thek./Ky values calculated from three
lyltransferase using the polymerase chain reaction and ligated itindependent experiments indicated thédacetylglucosamine-1-

into a vector that provides a polyhistidine tag at thée@ninus of phosphate was actually a better substrate than glucose or mannose
the expressed protein for ease of purification by affinity chroma- in the synthesis of both UDP- and dTDP-activated sugars.
tography. The high kinetic competence of this enzyme wikacetylglu-

To evaluate the function and substrate specificity of this new cosamine-1-phosphate hinted that this enzyme might actually be a
gene product, the enzyme was first tested with glucose-1-phosphatebifunctional enzymé.These enzymes catalyze both the acylation
(1) and deoxythymidinetriphosphate (dTTP) using our recently of glucosamine-1-phosphate (Figure 2) and the subsequent nucleo-
developed mass-spectrometry (MS)-based assagieed, deox- tide transfer. The standard assay for this acyltransferase activity is
ythymidinephosphoglucose was formed as expected from thethe indirect detection of released thiols using Ellman’s reagent.
genome annotation (Figure 1). The optimal activity was at@0 Because this assay measures the decomposition of thioesters by a
and a pH of 7.5, reaction parameters which would inactivate any variety of pathways that do not lead to product, we reasoned that

E. coliproteins that might have coeluted with tRefuriosusprotein. an assay that directly measured product formation would be
A divalent cation was necessary for activity with Rgserving preferable, especially at elevated temperatures. Reaction analysis
best. Nonlinear regression analysis of reactions run in triplicate by ESI-MS rapidly confirmed our hypothesis. In the presence of
resulted in &Ky = 8.1+ 0.7 uM and keat = 2.9 (s'1) (KeafKm = acetyl coenzyme A but in the absence of UTP, peaks corresponding

0.35 «M~1 s1) using glucose-1-phosphate as a substrate (Table to glucosamine-1-phosphate/¢ = 258) disappeared over time as
1). The enzyme also showed substantial activity with uridinetri- a peak corresponding fé¢-acetylglucosamine-1-phosphate/4 =
phosphate (UTP) as the nucleotide triphosphate. 300) appeared with the enzyme present. Acylation precedes
The utility of this novel nucleotidyltransferase in the synthesis nucleotide addition. No change was observed in the absence of the
of sugar nucleotides was then tested by evaluating the transferenzyme. With the addition of UTP, too, glucosamine-1-phosphate
efficiency of six different sugar-1-phosphates. Surprisingly, the was converted to UDP-GIcNAc. Peak quantification with internal
enzyme turned over a variety of substrates, including mannose-,standards and calibration curves provides the first MS-based
glucosamine-J), andN-acetylglucosamine-1-phospha®. Clearly, acyltransferase assay. To probe the steric limitations of the acyl
only an analysis of the kinetic competence of these substrates wouldmoiety, propyl CoA and butyryl CoA were tested. As was found
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o] Archaeal genomes clearly are a rich source of proteins; however,
OH )J\SCOA HSCoA OH genome annotation based on primary sequence homologies some-
HO Q 7 \ f HO o] times does not even hint at the true synthetic potential of the
HOTTN L & HO— N1 ¢ corresponding proteins. Chemical function analysis is required,
o-F-0 go*c o= 97h° ideally, with a range of substrates to ascertain the most likely in
3 o o Ys g y
R NH, vivo function and to uncover unexpected properties. The archaeal
Ny gene denoted originally as a glucose-1-phosphate deoxythymidy-
¢ B lyltransferase is actually a bifunctional acetyltransfeddsatetyl-
j\/\ Q Q 9 NN glucosamine-1-phosphate uridylyltransferase. The use of thermo-
YS\/\H H)H}Qo—g_—o—g—o KOJ stable enzymes in synthetic schemes also allows chemical steps
° acetyl conzyme A(Ql;* O OH that are sluggish at lower temperatures to be incorporated into the
0=pP-0° same step with an enzyme. Current studies are underway to use
o o o o these tagged sugar nucleotides to probe protein modifications by
\[]/S\/\N)J\ CI/YS\/\NJ\ \(S\/\HJ\ N-acetylglucosamine moieties.
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